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AbstrncL We reformulate the weighteddensity approximation based on a global 
average of the density by using the unified density-functional approach for non-uniform 
classical fluids which was introduced by Zeng and Oxloby. We show that the modified 
weighleddensily approximation (mm) of Denton and Ashcroft and the weighted-density 
approximation of Zeng and Oxlaby can be approximated as second-order tmncalions of 
exact functional expansions. Through lhis reformulation, we p r o p e  a new verjion of the 
modified weighted-densily approximation (NMWDA) depending on the charging parameler 
X and briefly discuss a basic question arising from the density-functional expansions. We 
show thal far homogeneous syslems the NMWDA and the weighteddensily approximation 
including the higher-order contributions also lead to lhe usual hypemetled-chain equation 
of state, and the homogeneous properties of the wcighteddensily approximation do not 
depend on the detailed forms of n-panicle hierarchy functions. Finally, we apply the 
NWDA lo the liquid-solid lransilian. Ihe numerical results oblained are compared With 
those of computer simulations and other approximations and show good agreemen1 with 
computer simulalions. 

1. Introduction 

In a recent paper, Lutsko (1991) had reformulated three kinds of weighted-density 
approximation (Baus and &lot 1985, Denton and Ashcroft 1989, Lutsko and 
Baus 1990a,b) based on a global average of the density and shown that these 
approximations are second-order truncations of exact Thylor functional expansions. 
The essential idea underlying this reformulation is that the direct correlation 
functional of an inhomogeneous system can be expressed as that of a homogeneous 
system by means of a density-functional expansion. This reformulation also suggests a 
new version for the well known weighted-density approximations which are currently 
used in the actual applications. On the other hand, this reformulation raises some 
questions 

(i) about the expansion of the direct correlation function for a given order 
parameter (e.g. Ap(v, A )  = Ap(.) - ,?[PI), 

(ii) about the application to simple liquid systems, i.e. the weighted-density 
approximation including the higher-order contributions also leads to the usual 
hypemetted-chain (HNC) equation of state for a homogeneous system, and 

(iii) ahout the application to the freezing problem, i.e. which approximations give 
the better results. 

0953-8984/92/489517+08SO7.50 @ 1992 IOP Publishing Ltd 9517 
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In this paper, we shall introduce the unified density-functional approach (Zeng 
and Oxtoby 1990) for non-uniform classical fluids to reformulate the weighted-density 
approximation based on a global average of the density. In section 2, we shall 
reformulate the modified weighted-density approximation (MWDA) of Denton and 
Ashcroft (1989) and the weighteddensity approximation of Zeng and Oxtoby using 
the density-functional expansion. Through this reformulation, we shall propose a 
new version of the modified weighted-density approximation (NMWDA) depending on 
the charging parameter and briefly discuss a basic question arising from the density- 
functional expansion of the n-particle hierarchy functional d,. In sections 3 and 4, we 
shall apply the NMWDA and the weighted-density approximation including the higher- 
order contributions to simple liquid systems and show that these approximations also 
lead to the usual HNC equation of state. Finally we shall apply the NMWDA to the 
freezing problem of hard-sphere liquids and compare our resullx with those of other 
proposed approximations. 

2. Reformulation of the weighteddensity approximution based on a global average 
of the density 

We now consider the excess (Helmholtz) free energy based on a global average of 
the density in the form 

PF[Pl,, = ") (1) 

where p = l / k , T ,  N = J d r p ( r )  and f ( p )  denotes the excess free energy per 
particle originating from the particle interaction. It is well known that F [ p ] ,  is the 
generating functional of the n-particle direct correlation functions (DCFS) c(") (Pcrcus 
1964, Hansen and McDonald 1986): 

c ( " ) ( T ~ ,  . . . ,r,,; [ P I )  = -6nOF[~l , , /6~(r1) . . . 6 d r n ) .  (2) 

Following the unified density-functional approach (Zeng and Oxtoby 1990) for non- 
uniform classical fluids, we define the n-particle hierarchy functional d, using the 
generating functional j5 = N b :  

dn(T i i . .  . ,T,;[PI) = 6"7 ib1 /6d r1 )  , . . ~ P ( T , ) .  (3) 

7hking the functional integration from an initial density p i ( r )  = 0 (note that 
p[pJ = 0) to a final density p ( r )  along a linear path p,, = Xp(r ) (O < X < I), 
we obtain for n = 2 

- P [ P ]  = / d r l d r l )  / d r 2 ~ ( 7 ~ ) 1 ' d h ~ i d X ' d ~ ( r l , ~ 2 ; [ X ' p l )  

= / d q p ( ~ ) / d ~ ~ ~ ( r ~ )  L d X ( 1 -  X)d2(~II~2;[X~1) (4) 

where X is the 'charging' parameter. In the last step, we have used the identity 
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valid for any h(A). In order to compare with the previous approximations (Denton 
and Ashcroft 1989, Zeng and Oxtoby 1990). we introduce the weighted density b and 
weighting functional w ( r l ,  rz;  [ p ] )  

&3l = ~ ~ d r , ~ ( ~ ~ ) J d r ~ ~ ( ~ ~ ) ~ ( r l , r ~ i [ ~ I )  (6) 

w ( T ~ , ~ z ; [ P ~ )  = 1 dA(1-  A ) d 2 ( ~ l r r Z ; [ A ~ I ) .  

where 

1 

(7) 
U 

We first consider the type of MWDA used by Denton and Ashcroft lb recover the 
MWDA of Denton and Ashcroft, we somewhat more generally expand dz(rl,rz; [Ap]) 
about a reference density b[p] ,  rather than about a fixed reference liquid density p R  
(Perms 1964, Evans 1979, Lutsko 1991): 

dZ(rl?r*;[API) = d*('1-%b[PI)+C ( n - 2 ) !  dr3. . .drndn(r1, .  . . ,Tn ,b [p l )  

(8) 

n=3 - /  
x A )  Ap(r,; A )  . . . A p ( r , ;  A )  

where 

A d r ;  A )  = W r )  - AP]. (9) 

Note here that d, does depend on the 'charging' parameter A. Then, the weighting 
functional w becomes, from equation (7), 

x /dr3 . . . d r n  dn ( r l ,  . . . , rn ,  dp1) 

x Ap(r3;A)Ap(r4;A) ... Ap(r,;A). 

In the uniform limit p ( r )  -+ p, equation (10) becomes 

d r3  . . . dr ,  d n ( r l ,  . . . , T , ,  p ) ,  (11) 

Taking the integration over r2 and comparing with equation (6), we can obtain the 
useful relations for a homogeneous state: 

j d r ,  dZ(q - rZ, p )  = 2 (12) 

1-1 . . . Jdr ,  . . . dr, d n ( r l , .  . . ,rn, p )  = 0 for n 2 3 .  (13) 
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On the other hand, we can also obtain equations (12) and (13) from the successive 
derivatives of the excess free energy with respect to the density and the sum rule for 
the DCF. Neglecting the higher-order terms n 2 3, we have 

4 . 1  - r2, PIPI )  id2(rl  - t2 ,  Apl) (14) 

and, in the uniform limit p(r) - p, equation (11) satisfies the normalization condition 

d r  w ( r ,  p )  = 1. (15) J 
This is the weighting function of the MWDA which was originally introduced by Denton 
and Ashcroft (1989). 

Secondly, we consider two t y p a  of weighteddensity approximation depending on 
the charging parameter A. 'Ib recover the Zeng-Oxtoby approximation in the same 
way as the MWDA, we first of all expand d2(rl,rz; [ X p ] )  about a reference density 
B [ X f l :  

and, in the uniform limit, 

where the higher-order terms n 2 3 automatically cancel, because b[Xp] + Xp. 
Through this reformulation, we have shown that the MWDA and the Zeng-Oxtoby 
approximation can, in fact, be expressed as second-order truncations of exact density- 
functional expansions, albeit beginning with different reference densities. These are 
clear from their original assumptions as are other weighted-density approximations 
(Lutsko 1991). 

On the other hand, this reformulation also suggests the NMWDA. TO obtain 
the NMWDA, we consider a density-functional expansion of d2(r1 , rZ;  [ X p ] )  about 
a reference density Xb[p]: 



Weighted-densily approninations 9521 

where 

= X ( d r )  - 61~1). (21) 

Neglecting the higher-order terms n 2 3, the weighting function becomes 

1 

W(CI,TZ[PI)  j d X ( 1 -  X)d2(q - r z , X 6 [ ~ I ) .  (22) 
U 

This is the weighting function of the NMWDA depending on the charging parameter 
X. We can see that for a homogeneous state the higher-order terms n 3 3 do not 
contribute. Note here that the MWDA is similar to the modified effectiveliquid 
approximation (MELA) (Baus 1987, Laird and Kroll 1990) which was introduced by 
Baus except the two-particle hierarchy function dZ(r1 -, r z ,  Xp[p]).  However, the 
MELA has the disadvantage that for a homogeneous state it does not yield t h e  correct 
c(’)(rI - r z ,  p). Once. again, we can expand d2(r, - r2,  Xb[p]) about a reference 
density p [ p ]  as follows (Groot 1987): 

x j d r 3  ... dl . ,dn(T1, . . . , r , ,~[pl)  (23) 

which is still exact. Taking only the first term, this approximation yields the MWDA 
of Denton and Ashcroft However, we cannot say that the MWDA is a second- 
order approximation of the NMWDA, because if we take equation (14) we can equally 
well rewrite it so that the sum appears on the left-hand side. A question arising 
from this reformulation is which approximations in the actual applications give the 
better results. This is, in fact, not an easy problem, as indicated by Lutsko (1991) 
and Rosenfeld (1991), because all approximations are based on powers of the order 
parameter and the reference density used to derive these approximations appears 
as more or less an arbitrary rather than a fixed reference liquid density. This is 
actually related to the question of the convergence of the underlying expansion 
of d Z ( r l , r z ; [ X p ] ) .  Therefore, we can see that a good approximation in actual 
applications depends on how we choose an adequate reference density or  how fast 
the series converge. We still need to study this problem further. 

3. Applications to simple liquid systems 

As an application of the NMWDA, we first consider simple liquid systems (Kim and 
Jones 1990, Brenan and Evans 1991, Denton and Ashcroft 1991, Kim 1991). Since 
the weighted density is given as 

and in a homogeneous state the weighting function w(r.p) of the NMWDA satisfies 
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we can show that the NMWDA also leads to the usual HNC equation of state as do the 
MWDA and the Zeng-Oxtoby approximation (Kim 1991). Furthermore, we can prove 
that the weighteddensity approximation (i.e. equation (10)) including the higher- 
order contributions also leads to the usual HNC equation of state and show that the 
homogeneous properties of the weighted-density approximation do  not depend on 
the detailed forms of the n-particle hierarchy functions d,. From equations (6) and 
(lo), c [ ' ) ( r ; I p ] )  and c ( ' ) ( r , p )  are given as 

p - ' c ( ' ) ( r , P )  = z ~ ' ( P ) ~ ( T , P )  + (1/V)pf"(p)  (26) 

and 

where the weighted density is 

x /%. .  . dr ,  dn(Tl,. . . . T , , I % P ] )  

x AP(T,; A )  Ap(r4; A) . . . A d r , ;  A) ) .  (28) 

Substituting equation (26) into equation (27) and using the exactly known relation 
(Kim and Jones 1990) 

c%) = C?T; bgl) - In[g(r, P ) ]  - P ~ ( T )  (29) 

we can obtain the HNC closure after some manipulation. Here g ( r , p )  is the 
pair correlation function, and 4 ( r )  the intermolecular potential of the system. 
Therefore, we can conclude that the homogeneous properly of the weighted-density 
approximation does not depend on the detailed forms of the n-particle hierarchy 
functions d,. This result coincides with that of Kim (1991) and confirms once again 
that, if the three required conditions suggested in Kim's (1991) paper are satisfied, the 
weighteddensity approximations lead to the HNC equation of state. Furthermore, we 
can easily prove that these kinds of weighted-density approximation do not generate 
the n-particle direct correlation functions for n 3, because 

lim,(,i_,{6"6[p]/p(T,), . . p ( r , , ) )  -+ 0 (in the thermodynamic limit). (30) 
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a b l e  1. Freezing parameters for the hard-sphere liquidsalid transition: average 
solid density pa, liquid density pL,  change A p  in density and Lindemann parameter 
L = (3/oa2)’IZ for the FCC solid wilh a k i n g  lhe FCC lallice constanl given by 
a = ( ~ , / 4 ) ~ / ~ ,  where Q is the hard-sphere diameter. 

Simulation a 1.041 0.943 0.10 0.126 
NMWDA ’ 1.009 0.910 0.10 0.123 
MWDA e 1.0% 0.910 0.13 0.097 
Zeng-Oxtoby approximation d 0.974 0.873 0.11 0.115 
Weighted-density approximation 1.02 0.881 0.14 0.101 
G E M  ‘ 1.041 0.945 0.00 0.100 

From Hoover and Ree (1968). ’ From this work. 
‘ From Denton and Ashaoft (1969). 

From Zeng and Oxloby (1990). 
‘ Fmm Cunin and Ashcroft (1985) and Cunin (1989). 

From Lutsko and Baus (1990a. b). 

4. Application to the hard-sphere solid 

As the second application of the NMWDA, the liquid-solid transition (Baus 1987, Singh 
1991) can be considered. In Fourier space, equations (5) and (16) lead to a non-linear 
equation for b[p] :  

where ps denotes the Fourier components of the density at the reciprocal lattice 
vectors G of the solid. For the analysis of the hard-sphere liquid-solid transition, 
we have assumed a face-centred cubic (FCC) lattice and also used a Gaussian 
parametrization for modelling the hard-sphere FCC crystal. For the hard-sphere fluid, 
d2) is obtained from the Percus-Yevick approximation (Thiele 1963, Wertheim 1963): 

c(’)(k, 7 )  = (4a/k3)[a(ycos y -sin y) + (6qb/y)(y2 cos y - 2y sin y - 2cos y + 2) 
+(qa/2y3)( y4cos y-4y3sin y-  1 2 ~ ~ ~ 0 s  y+24ysiny+24cosy-24)] 

(32) 
where 7 = (rr/6)po3 is the packing fraction of hard spheres of diameter U, 
a = ( 1 + 2 ~ ) ~ / ( 1 - q ) ~ ,  b = - ( l -q/2)z/( l -q)4 and y = ka. For the uniform hard- 
sphere liquid the Carnahan-Starling (Cs) (1969) approximation was used to calculate 
the total free energy of the liquid: 

(33) 
2 PFM(p) = Inp t 3h.4 - 1 + n(4-377)/(1- 7) . 

These cs results are virtually identical with the computer results of the hard-sphere 
liquid. 

In table 1, our results for the analysis of the freezing problem of hard-sphere 
liquids are compared with those of the molecular dynamics (Hoover and Rec 1968), 
the MWDA (Denton and Ashcroft 1989), the  weighted-density approximation (Curtin 
and Ashcroft 1985, Curtin 1989) and the generalized effective-liquid approximation 
(Lutsko and Baus 1990a.b). Here the Lindemann parameter L = (3/au2)’/’ for 
an FCC crystal with the lattice constant ps = 4/u3 is also represented in the above 
theories. Our results show good agreement with the results of computer simulation. 
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5. Discussion and results 

We have reformulated the weighteddensity approximation on the basis of a global 
average of the density by using the unified density-functional approach and proposed 
an NMWDA. We have shown that for homogeneous systems the NMWDA and weighted- 
density approximation based on the exact density-functional expansion also lead to 
the HNC equation of state, as do the MWDA and the Zeng-Oxtoby approximation 
based on secondader  truncations of expansions, and the homogeneous properties 
of weighted-density approximations do not depend on the detailed forms of the n- 
particle hierarchy functions d,. For the freezing problem of hard-sphere systems 
the NMWDA shows good agreement with computer simulations as do other weighted- 
density approximation theories. 

O n  the other hand, this reformulation raises the question of the density-functional 
expansion about an arbitrarily chosen reference density. This question basically 
depends on the convergence of the order parameter (and hence A ~ ( T ;  A))  and is 
related to the fact that some theories work better than others when applied to the 
freezing problem. We still need to study this problem further. 
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